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The interpretation of fold axial data from regions of polyphase folding 
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Abstract- -A region with two interfering fold phases is considered.  If it is assumed that the early (F,,) and later 
(F,,+l) fold phase are cylindrical and that F,,+I formed by shear folding, then it is shown how the a- and 
b-directions of F,+ I can be determined.  A technique for determining the original orientation of Fn and S~ is 
presented provided that similar amounts of simple shear occurred on opposing limbs of F~+t folds. The cause of  
variability in fold axial orientations is investigated and information to be extracted from fold axial distributions is 
presented. 

INTRODUCTION 

INTERPRETATION of data from regions with polyphase 
folding conventionally involves recognition of fold axes 
and axial planes in the large scale, thus allowing sub- 
division of the study area. Hence, by plotting poles to 
the reference foliation (i.e. bedding), one obtains infor- 
mation regarding the present orientation of the domi- 
nant structures (Ragan 1985, Ramsay & Huber 1987). 
Such an analysis may not always be possible, particularly 
in strongly deformed regions, where fold phases may be 
isoclinal in nature. However, the recognition of struc- 
tures in the small scale is usually feasible. The method 
developed below essentially deals with the interpre- 
tation of small-scale fold axial data which allows extrac- 
tion of information from even highly deformed areas, 
provided the inherent assumptions are justifiable. 

SHEAR FOLDING 

To explain the development of similar folds, shear 
folding has been postulated (Ramsay 1967, pp. 430- 
436). During an episode of shear folding (Fn) two 
mutually perpendicular directions, an and bn, define the 
shear plane, with an defining the absolute movement 
azimuth. The fold axis need not always parallel the 
bn-direction. Two properties of shear folding are incor- 
porated within this contribution: 

(i) the fold axis produced when a plane of any orien- 
tation undergoes shear folding will always lie in the shear 
plane. This is always the case unless the given plane 
initially contained the an-direction; 

(ii) any pre-folding linear fabric which was not an 
element of the shear plane will constitute a planar 
distribution after folding (Ramsay 1967, Ramsay & 
Huber 1987). 

APPLICATION TO SHEAR FOLDING 

Prior to applying the above properties to superposed 
folding, three assumptions must be entirely justified 
before the theory developed below can be satisfactorily 
applied: 

(i) the earliest fold phase under consideration (Fn) 
acted on a pre-existing planar foliation (Sn-1), i.e. 
bedding or a planar tectonic fabric, that was uniform in 
orientation throughout the study area; 

(ii) with or without a pure shear component the later 
fold phase (Fn+i) formed via shear folding; 

(iii) both fold phases must be cylindrical in nature. 
If a component of pure shear is associated with Fn+i, 

then the kinematic axes of the simple shear component 
of Fn+l will still be calculable. However, in such a case 
the original orientation of Fn will be incalculable. The Fn 
orientation determined by this technique will be the Fn 
orientation without the simple shear component but 
with the pure shear component. If the original Fn orien- 
tation could be determined by looking at an area which 
had undergone insignificant Dn+ l deformation (Ramsay 
1967) and the orientation of the principal axes of the 
pure shear component were known, it would then be 
possible to estimate the amount of pure shear (or vol- 
ume loss) present. Weijermars (1985) has addressed the 
added complications to be expected if one or other, or 
both phases developed by dome folding (by the mechan- 
isms proposed by Gauss 1973 and Cobbold & Quinquis 
1980). Only the simplest case is considered here. 

The F n event folds an_ 1 SO that Sn_ 1 is consequently of 
variable orientation whilst the Fn fold axes comprise a 
fairly linear feature across the area under analysis. 
When Sn-t surfaces are folded by Fn+l, the Fn+l fold 
axes developed thereon lie in and define the Fn+l shear 
plane (Carey 1962, Thiessen & Haviland 1986) (see Fig. 
1). The F,,+~ shear plane is equivalent to the second or 
Fn+l hinge plane of Thiessen & Haviland (1986). Due to 
Fn+l folding the F n fold axes will define a plane (the F n 
hinge plane) which contains the an+l-direction, i.e. the 
a-direction of the F,,+~ fold phase. Hence by plotting 
fold axial data on a stereonet one can work out the shear 
plane and absolute movement direction of the simple 
shear component of the later fold phase as is illustrated 
in Fig. 2. This is true whether or not a component of pure 
shear is associated with Fn+j. The an+i-direction is 
parallel to the intersection of the two girdles defined by 
the two fold axial distributions. The bn+l-direction will 
be perpendicular to the an+t-direction within the Fn+~ 
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Fig. 1. An originally horizontal Sn_ l (stereonet a; dots) is folded by F,, folds (stereonet b; lightly circled dots). F,,, folds have 
horizontal N-S fold axes and vertical axial planes. At this stage poles to S,,_ ~ have a girdle distribution. Subsequently this 
arrangement is refolded by F,,+ l folds (stereonet c; heavily circled dots). Poles to S,_ ~ have a variable distribution, however 
the fold axes of both phases describe girdle distributions. These intersect at the a~+t-direction and the b,,+~-direction is 
perpendicular to this orientation within the F,,+ l girdle. For this case the an+ l -direction is vertical and the b,,. 1 -direction is 

0 to 090. 
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b n +  I ~ ' n , I  

Fig. 2. The girdles described by the fold axial distributions are plotted 
(i.e. the hinge planes) and the intersection of these gives the 
an+l-direction, with the bn+t-direction lying perpendicular to this 

within the Fn+ 1 girdle. 

hinge plane.  This b , + r d i r e c t i o n  will be  para l le l  to the  
t rue F .+  1 fold axial direction (i .e.  with r e spec t  to the 
initial Sn-1 or ientat ion)  if, and only  if, b~+] lies within 
the initial Sn- t  orientat ion.  This  canno t  be  a s sumed .  
H o w e v e r ,  bn+l may  be used to  ob ta in  m o r e  deta i led 
informat ion  as to the nature  of  F~ (see Fig. 3). 

The  technique for  es t imat ing the  o r i en ta t iona l  re-  
lat ionships of  two consecutive fold phases  is as follows. 

(i) The  data are p lo t ted  and  the a , + ] -  and 
b ,+ l -d i rec t ions  are calculated as descr ibed  a b o v e  (see 
Fig. 2). 

(ii) Two  points  with ex t r eme  va lues  on the  F ,  fold 
axial distr ibution (P1, P2 in Fig. 3a) are  m a r k e d .  T h e s e  
points  should be located  within a fairly high con tou r  
interval  or  may  be centres  of  two m o d e s  of  a b imoda l  
distr ibution.  

(iii) With  shear  sense equal  to tha t  which f o r m e d  the 
respect ive  l imbs,  the angles f rom the a~+l -d i rec t ion  to 
P] and P2, are measu red  (see Fig. 3b).  T h e s e  angles  are  
def ined as x I and x2, respect ively .  T h e y  m a y  be 
m easu red  directly f rom the s te reone t .  E q u a l  a m o u n t s  of  
s imple  shear ing (equivalent  in all respects ,  excep t  sense,  
to that  which f o r m e d  the folds) a re  appl ied  to  bo th  l imbs 
until P] and P2 lie along the one  l inear  di rect ion.  This  is 
an es t imat ion  of  the original o r i en ta t ion  of  the  F ,  fold 
axis with respec t  to the Fn+] phase  (Fig. 3a).  M a t h e m a t i -  
cally the value of  x] af ter  unfold ing  (which is x~) is given 
by 

tan x~ = 2(cot  xl - cot x2)- I. 

This m e t h o d  assumes  fold s y m m e t r y  in tha t  the folds 
deve loped  by equal  a m o u n t s  of  s imple  shear  on  oppos-  
ing limbs. Such an a s sumpt ion  will be  largely  valid for  
folds p r o d u c e d  dur ing a coaxial  s train h is tory  bu t  asym- 
me t ry  is to be expec ted  unde r  non-coaxia l  de fo rma t ion .  

(iv) T o  es t imate  the pre-F~+l  o r i en ta t ion  of  S , ,  the  S,, 
axial p lanes  co r respond ing  to P1 and  P2 are  p lo t ted .  On  
Fig. 3(c) these  planes  are  label led  Snl and  Sn2. T h e  
in tersect ions  of  these  p lanes  with the F , + I  hinge p lane  
gives two or ien ta t ions  m and  n,  which should ,  in theory ,  
be  one  point .  T h e  p lanes  conta in ing  m or  n and  the 
calcula ted p r e - F , +  I F ,  o r i en t a t i on  are  e s t ima te s  of  the 
pre-Fn+]  Sn or ien ta t ion  (Fig. 3c, cf. Sk je rnaa  1980). 

Because  the t rue  re la t ionsh ips  of  the fold phases  are 
know n ,  it is poss ib le  to a p p l y  fold in te r fe rence  classifi- 
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Fig. 3. (a) The a,,+ t-direction and b,,+ i-direction is determined for the 
given situation using the method illustrated in Fig. 2. The orientations 
of the F,, axes (Pi and P2), that have extreme orientations within the F,,, 
distribution, are plotted. The angles x~ and x 2 are measured, x t is the 
angle from a,,+l to Pt measured in the same sense as the folding, x 2 is 
defined similarly with respect to P2. Using the formula presented in the 
text. the original (pre-F,+ ]) F, orientation is determined and plotted. 
(b) The relationship between x], x2 and a,,+ I. The  shear senses are 
those used in unshearing both limbs to determine an estimation of the 
original orientation of the F,, fold axis. (c) The axial planes corre- 
sponding to Pt and P2 (i.e. S,,~ and S,,2) are plotted. These intersect the 
F,, girdle at m and n (theoretically the same point). The plane 
containing m and/or n and the original F,, orientation is an estimate of 

S,, (the dotted plane in the figure). 

ca t ions  such as tha t  p r o p o s e d  by Thiessen & Means  
(1980). 

V A R I A B I L I T Y  IN F O L D  A X I A L  O R I E N T A T I O N S  

Variabi l i ty  in o r i en ta t ion  of  fold axes will not  occur  
where  the phases  had  a co-axial  and/or  co-p lanar  initial 

SG 13:3-C 
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spatial relationship, i.e. type 0 or type 3 interference 
(Ramsay 1967, Thiessen & Means 1980, Ramsay  & 
Huber  1987). A quick glance at the data will therefore  
allow omission of these interference types. For  data with 
variable orientations of fold axes, application of the 
reconstruction technique illustrated in Fig. 3 will enable 
the true nature of the relationship to be seen. 

Finally, it is noted that the amount  of variability in the 
orientation of fold axes can be attributed to four factors: 

(i) the tightness of F,; i.e. its tightness prior  to Fn+I; 
(ii) the tightness of F~+ ~; 
(iii) the angle between the original fold axial and axial 

planar directions of the respective fold phases  (see Fig. 
4a); 

(iv) the style of folding. 
In general,  attainment of greater  tightness by one fold 

phase leads to greater variability in the orientat ion of the 
fold axes of the other fold phase.  Low variability is to be 
expected for high interlimb angles. Largest  variability 
occurs for interlimb angles close to 90 ° but as interl imb 
angles approach zero, variability is reduced. Figure 4(b) 
illustrates the relationship between the third factor and 

Sn .---.4 

variability. The angles nj, n 2 and n3 are defined in Fig. 
4(a) and vary from 0 to 90°; note that n 3 is equivalent to 
the angle 6 of Thiessen & Means (1980). For 171, n: 
and/or n 3 = 0 ,  the variability in both phases will be 
negligible. By holding one variable constant and letting 
the other  two vary (i.e, looking at cross-sections), the 
relationship shown in Fig. 4(b) can be deduced; for 
example,  the plane perpendicular  to n~, for which n~ = 
90 ° gives the relations shown in Table 1. The curves 
shown in Fig. 4(b) are schematic and do not represent  
mathematical  functions. Wei jermars  (1985) has already 
addressed the relationship between fold style and vari- 
ability. Grea te r  variability is to be expected f rom more 
rounded concentric folds as opposed  to chevron styles. 

Not  only do the first three factors affect variability 
but they also control the distribution of fold axes ob- 
served. Table 2 indicates the predicted type of distri- 
bution for each consecutive fold phase,  as a function of 
tightness, interference pat tern and style (cf. Weijermars  
1985) As such, by looking at distributions from regions 
that have type 1 or  2 interference pat terns it is possible in 
some cases to ascertain the tightness of Fn prior to F,+~ 
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Fig. 4. (a) A definition ofnl, n 2 and n 3. n I is the angle between the F n fold axis and the intersection of S,, and Sn+ l . n 2 is the 
same except with respect to Fn +l. n3 is the dihedral angle between S, and S,+l. (b) A schematic relationship between n~, n 2 
and n3, and fold axial variability. The level of variability increases with the intensity of the shading pattern--light stipple 

(least varied), medium stipple to heavy stipple (most varied). 
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Table 1. With n t = 90 °, n 2 and n 3 are let 
vary from low to high values. The corre- 
sponding variability of fold axes is tabu- 

lated as a function of these 

n 1 =90 

] LDW VARIAHLITY 

] MEDIUM VARIABILITY 

] HIGH VAKIABILITY 

I 

I F~t+Hi ~ '  \ ~ ,  Original I: I 
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Fig. 5. Interpretation of the data from the Tabberabbera district (data 
from Fergusson & Gray 1989). 

(i.e. whether it was isoclinal or non-isoclinal). For 
example, Weijermars (1985) describes early folds with a 
small, girdle distribution and later folds with a bimodal 
distribution. This was interpreted as chevron early folds 
non-coaxially refolded (interference type 1 or 2) by later 
cylindrical folds; a conclusion compatible with Table 2. 
The early folds were non-isoclinal, prior to Fn+t. 

EXAMPLE 

Data from the Tabberabbera district, eastern Vic- 
toria, Australia (Fergusson & Gray 1989), are used to 

illustrate this technique. An early fold phase affects 
Ordovician quartz flysch and a later, locally intense, fold 
phase affects the latter and an Esmian clastic sequence. 
F1 folds are 'close to tight with narrow, mainly angular 
hinges and long planar limbs' whereas F3 folds are close 
to open with low amplitude to wavelength ratios. F1 
folds are affected by F3 within the Mitchell Syncline. 
Data used here was taken by Fergusson & Gray (1989) 
from within this area. Both fold axial distributions 
describe variability (FI: bimodal-girdle, 144 87NE; F3: 
girdle, possibly bimodal, 349 76W). Figure 5 shows the 
intersection of the two hinge planes and the a 3 and b3 
directions. The points P~ and P2 are also shown. The 
angles x 1 and x2 are measured clockwise and anti- 
clockwise with respect to a a (Xl = 35 ° and x2 = 75°). 
From this the true orientation of FI was calculated to be 
7 ° towards 145 ° . This result is in strong agreement with 
Fergusson & Gray's (1989) description, where they 
indicate that outside the influence of F 3 folding, F 1 folds 
are 'shallowly plunging E-W to NW-SE'  folds. 

DISCUSSION 

The technique presented here allows easy interpre- 
tation of fold axial data and gives a three-dimensional 
view of the structure of a given area. Ragan (1985) and 
Ramsay & Huber  (1987) show that multiply folded 
regions may be interpreted by selective plotting of 
bedding; however, this will only give the final orientation- 
al relationship between consecutive fold phases. By 
contrast, the method developed here strives to delimit 
the original orientational relationships of the respective 
fold phases. Caution must be taken to ensure that the 
technique is applied within a tectonically homogeneous 
domain. 

It must be reiterated that the technique is simplistic in 
that it assumes that equal amounts of shear strain devel- 
oped on opposing F,÷I limbs. This may not be the case 
particularly in regions having undergone a simple shear 
D,~+t strain history. It must also be noted that perfect 
shear folds are rarely encountered in nature; many folds 
approximate to this morphogenetic category. Also, the 
effect of early fold shapes on interference patterns was 
not considered in this study (Ghosh & Ramberg 1968, 
Skjernaa 1975, Watkinson 1981). However, Thiessen & 
Haviland (1986) have demonstrated that this factor is 
not important. This results from the stipulation that the 
second fold phase must develop by shear folding. De- 

Table 2. The relationship between tightness/style of the respective fold phases,  interference type and the 
resulting distribution of the fold axes of both phases. Tightness of Fn refers to the tightness prior to F~ +t. 
The non-isoclinal categories are: Con = concentric and Chv = chevron. The distribution types are U = 

unimodal, B = bimodal and G --- girdle 

Tightness and 
style 

Distribution 

Inference type 

lso Iso Iso Con Chv Chv Con Chv Con Any Fn+ 1 
Iso Con Chv Iso Iso Chv Chv Con Con Any F n 

U G B U U B B G G U Fn+ 1 
B B B G B B G B G U F. 

1 o r 2  0 o r 3  
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spite the above criticisms the model presented here 
serves as a first approximation in many cases. 

Weijermars (1985) states that the interpretation of 
fold axial distributions of early (Fn) folds is problemati- 
cal, particularly if the assumption of cylindricity of either 
of the fold phases is removed. Table 1 of Weijermars 
(1985) describes the interpretation of distributions with 
and without the assumption of cylindricity, whereas 
Table 2 of this paper only addresses the case of cylindri- 
city. 

The technique presented in this paper is similar to that 
of Thiessen & Haviland (1986) in so far as they showed 
how the original orientation of the earlier fold phase 
could be estimated. However, the present technique has 
some advantages. Thiessen & Haviland (op. cir.) de- 
scribe Ramsay's method of multiple a~+ 1 orientations; 
this is not a requirement of the present technique. 
Further, data can be analysed in bulk, rather than in 
portions, when using the present method. To determine 
Sn Thiessen and Haviland's method requires that several 
sections through the deformed rock mass are available, 
such that traces of the first axial plane of one particular 
fold are traceable. Normally this would only be available 
from small samples. The technique presented here is 
applicable on all scales. 

CONCLUSIONS 

(i) A technique for the interpretation of fold axial data 
in regions with two fold phases, allowing the determi- 
nation of the original orientations of the respective fold 
phases, has been presented. 

(ii) Two interfering fold phases, in general, produce a 
variability in fold axial orientations unless the inter- 
ference pattern is of type 0 or 3. 

(iii) Variability is largely proportional to tightness, 
style and the relative orientations of the respective fold 
phases. 

(iv) Under the assumption of cylindricity, fold axial 
distributions can give information regarding the 
pre-k,,+ 1 style and tightness (i.e. chevron or concentric; 
isoclinal or non-isoclinal) of F,,. 
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